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Abstract—Federated machine learning (FL) is a powerful
technology which can be implemented to exploit the sheer amount
of geographically distributed data for enhanced computation.
Exploiting the impending proliferation of wireless devices, in
this paper, we incorporate distributed quantized transmissions
for reliable connectivity to a remote FL server. We develop
a novel theoretical framework for the convergence analysis of
the proposed network under joint impact of communication bit
error rate (BER), and model quantization, and participation
control. We show that the convergence rate of the network is
affected by the BER and it can be improved via participation
control. Through simulation, we demonstrate that our proposed
model can provide the same performance as the conventional
FL networks based on point-to-point communication while the
energy consumption is divided across the distributed nodes.

Index Terms—Federated Machine Learning, Distributed Sys-
tems, Distributed quantization and Fusion, Convergence analysis.

I. INTRODUCTION

DATA centric technologies such as machine learning and
artificial intelligence are enabling tools for proposing

solutions in a manifold of complex systems [1]. In this regard,
the federated machine learning (FL) is an emerging computing
technique in which multiple clients take part in training a
machine learning model through iteratively sharing their local
model updates with an aggregating server instead of sharing
their entire dataset. The server then fuses the received updates
and feed-back a combined model to the local clients for the
next round of training over local datasets. In this context, the
FedAvg is one of the commonly used combining scheme under
which the average of the received model updates are sent back
to the local clients [2].

The majority of the related works in the area of FL over
wireless links revolves around the coupling between the com-
putation and communication [3]–[9]. Particularly, a resource
allocation has been considered in [3] to mitigate the effect
of packet error rate on the convergence of the model through
power allocation and client selection. In [4], the superposition
of the waveforms was exploited to reduce the FL system’s
latency. The weighted averaging approach was proposed in
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Fig. 1. A conceptual model for the proposed FL through distributed
compressed transmission and fusion including N cluster of local clients and
distributed nodes with wireless capabilities, denoted �(n).

[5] under which the received model updates from the cellular
clients are weighted based on their communication success
probability. The energy efficiency of the FL communications
was investigated in [6]. Furthermore, some works proposed
to employ model quantization to lower the overhead and to
improve the latency [7]–[9]. Specifically, model quantization
and its impact on the convergence of the FL system was pre-
sented in [7]. In [8], different quantization levels for different
layers of the neural network layers was proposed. Developing
upon the previous works, a joint consideration of the model
quantization and transmission outage was taken into account
in [9] where authors analyzed the resulting convergence rate.

The majority of the related works above focus on the
capacity of the wireless channels as one of the main criterion
to trigger a client communication, i.e, the aggregation occurs
if the wireless link is not in outage. Although effective,
this approach overlooks a possible opportunity to exploit
the erroneous aggregation links to train the neural network.
Particularly, drawing upon the fact that more participation is
auspicious in the absence aggregation error [10], it is motivated
to determine for what range of bit error rates (BER)s the
erroneous aggregated information can be used to expedite the
convergence of the FL model.

In this context, the joint impact of BER and model quan-
tization on the convergence of the FL networks has not been
investigated yet. Recently, the authors in [11] incorporated the
effect of BER on the FL performance under a binary erasure
channel where the updates with erroneous communications are
excluded from the FedAvg at the server. In this paper, we
aim to demonstrate that model updates received with com-
munication error can be exploited to improve the convergence



of the model training via participation control based on the
estimated BER. Furthermore, we introduce a novel FL network
model based on distributed quantized transmission and fusion
to divide the energy consumption of the network among the
several distributed nodes while improving the communication
BER [12]–[16]. Our proposed FL network is particularly
useful in applications with stringent constraints on power
consumption such as satellite communication links. The main
contributions of this work are summarized as follows:

• Network Model: We introduce a novel FL network
based on distributed quantized transmission and fusion
to perform FL over unreliable wireless links.

• Convergence Analysis: We develop a novel convergence
analysis framework and obtain an upper-bound for the
convergence rate of the FL system. Different from ralted
work [11], our framework includes both of the model
quantization and communication BER effects.

• Verification: We evaluate the performance of the pro-
posed federated ML network through investigation of its
convergence and accuracy for recognition of the hand-
written digits using MNIST dataset.

II. SYSTEM MODEL

Figure 1 illustrates a conceptual model for our proposed FL
network including N clusters of local clients and distributed
nodes denoted �(n), and the FL server. It is considered that
the FedAvg is performed at the FL server. At each model
aggregation time step, the local client performs the following
subsequent steps: (i) first generates the model updates based on
its local data and then quantized the model into a lower reso-
lution data. (ii): it transmit towards the neighboring distributed
wireless devices to implement distributed quantized transmis-
sion towards the FL server. In this paper, we only focus on
the uplink phase and we consider perfect communication for
the down link [9]. It is considered that all nodes are single
antenna and transmit power is fixed. The wireless channel
coefficient between the i-th transmitting node inside the n-th
cluster and FL server at the t-th time step is denoted hns

i
(t)

where i 2 {1, ..., |�(n)|}. For example, h1s2(t1) represents the
channel from second distributed node inside the first cluster
to the FL server at t1. The received signals at the receiver
is assumed to be perturbed by a zero mean additive white
Gaussian noise (AWGN) that its variance is denoted �

2. In the
following, we will first explain the FL aspect of the system
and then, we clarify the distributed quantized transmission.
A. Federated Machine Learning

We consider a wireless FL system aimed to fulfill the
following computing problem with N local clients:

min
w

1

N

NX

n=1

Fn (w) , (1)

where Fn (·) is the loss function of the n-th client, w 2 RZ

represents the model to be learned with a dimension of
Z parameters. Considering the FedAvg scheme, the system
performs the following key steps:

Coordination: It is assumed that the wireless devices are
geographically clustered as distributed nodes neighboring a lo-
cal client. Prior to transmission towards the distributed nodes,
the FL server acquires the channel state information (CSI)
of the distributed nodes through dedicated control channels.
Based on the CSI, it is then decided what cluster would be
triggered for model aggregation.

Local Update: Once participating clusters are determined,
each local server trains its model by gradient descent as

wt
n = w̄t�1 � ⌘rFn

�
w̄t�1

�
, (2)

where t is the current time step, ⌘ is the learning rate, w̄t�1

is the averaged model update from the previous downlink
communication time step, and wt

n is the current local model
update. Also, we let g

t
nz represent the z-th element of the

gradient vector for the n-th local server at the t-th time step,
i.e., rFn(w̄t) = [gtn1, ..., g

t
nZ ]T where [·]T signifies transpose.

Gradient Quantization: In this step, the client performs
gradient quantization prior to transmission towards its neigh-
boring nodes. We consider stochastic quantization [17] which
can be described as the conversion of decimal values into a
binary code-word with p+ q +1 bits, where p bits defines the
end points of the quantization intervals denoted by �min and
�max, q bits represents the resolution of quantization between
the end points, and 1 bit for the sign of the original decimal
value. Mathematically speaking, the z-th gradient parameter
of the n-th client after stochastic quantization is given by

Q
�
g
t
nz

�
=

(
sign (gtnz) .ql w.p ql�|gt

nz|
ql+1�ql

sign (gtnz) .ql+1 w.p |gt
nz|�ql

ql+1�ql

, (3)

where w.p stands for the ’with probability of’, ql is the l-
th quantization interval out of 2q � 1 uniformly distributed
partitions given by

ql = �min + l

✓
�max � �min

2v � 1

◆
, l = 0, ..., 2q � 1. (4)

Uplink Transmission: once local model updates are quan-
tized, the selected clients will be triggered to convey the local
updates to FL server through distributed quantized transmis-
sion. This phase in the t-th time step of the FL process can
be expressed as

w̄t = w̄t�1 � ⌘

PN
n=1 ↵

t
nQ�1

�
Q
⇥
rFn

�
w̄t�1

�⇤
+ �t

n

 
PN

n=1 ↵t
n

, (5)

where ↵
t
n is the participation indicator function such that

↵
t
n = 1 if the n-th cluster participate in the uplink transmission

and ↵
t
n = 0 otherwise, Q [·] represents the quantization

process, Q�1 {·} represents the conversion of the digitized
data to decimal numbers, and �t

n 2 {0, 1}Z⇥(p+q+1) is
a binary matrix representing the BER due to the wireless
communication. Particularly, each entry of �t

n is a binary
vector whose one elements represent erroneous bits.

The communications from the selected clusters are ful-
filled through frequency division multiple access (FDMA).
Particularly, each local client transmit towards its neighboring



distributed nodes at which the observed signal is quantized and
then conveyed to the FL server. In the following subsection,
we clarify the proposed uplink communication based on
distributed quantized transmission and fusion.

In general, the participation parameters can be random vari-
ables in that, each local client may not always be available to
participate in the aggregation in a predefined and deterministic
way. Thus, we assume that each local client will participate
with a known a prior probability and we define a super-set ⇤
encapsulating all possible participation patterns with at least
one active cluster:

⇤ =
n
↵1,↵2, ....,↵2N�1, | 8i, j  2N , (6)
NX

n=1

↵in 6= 0 \ 8i 6= j, {↵i ^ ↵j} 6= ↵i

o
.

where ↵i = [↵i1, ↵i2, · · · , ↵iN ] is the i-th possible combi-
nation where ↵in 2 {0, 1} and ^ is Boolean intersection.
Note that if ↵

t
n = 0, 8n = 1, .., N , then there will be no

communication, and the t-th time step will not count towards
the FL process. Therefore, ↵

t
ns can take on one of the possible

patterns in each aggregation time step:
⇥
↵
t
1, ↵

t
2, · · · , ↵

t
N

⇤
2 {↵1,↵2, ....,↵2N�1} .

Furthermore, we define the set of active clusters for a given
participation pattern ↵i to facilitate the convergence analysis.
Particularly, we let {↵i}+ denote the set of non-zero elements
of ↵i (the support set) given by

{↵i}+ = {↵in|8n 2 {1, 2, ..., N} , ↵in 6= 0} . (7)

where | {↵i}+ | is its cardinality. Similarly, we define the set
of corresponding client indexes as

{ni}+ = {n|↵in 6= 0} . (8)

Downlink Transmission: in the last step, the FL server
conveys the averaged model update w̄t down stream to the
local clients. Mathematically speaking,

wt�1
n = w̄t�1

, 8n = 1, ..., N. (9)

In this paper, we assume perfect downlink communication
which is common in the FL network literature [9].

B. Distributed quantized transmission and fusion

Letting xn represent the symbol transmitted by the n-th
client, the received signal at the k-th node of the n-th cluster
can be written as

ykn =
p

�xnhnk + Nk, (10)

where hnk is the complex wireless channel coefficient and Nk

is the additive white Gaussian noise (AWGN) with a variance
of �

2. A PSK modulation is used as xn 2 X where |X | = 2M

and M is the modulation index. We assume that E
⇥
|xn|2

⇤
= 1.

Each node quantizes the received signal into one-bit per real
and imaginary parts and then conveys them to the FL server.
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Fig. 2. BER performance of the distributed quantized transmission and fusion
technique in comparison to a centralized point to point communication with
same total transmit power used, � = 1, and 8-PSK modulation.

The received signals from the k-th node of the n-th cluster
can be expressed as

ˆykn = sign {Re {ykn}} + jsign {Im {ykn}} (11)

It is assumed that the available bandwidth is such that the
communication error for 1 bit transmission can be neglected
[15]. Here, to facilitate the analysis, we express the complex
system as a two dimensional real space as

ỹkn =


sign {Re {ykn}}
sign {Im {ykn}}

�
, x̃n =


sign {Re {xn}}
sign {Im {xn}}

�

H̃nk =


Re {hnk} �Im {hnk}
Im {hnk} Re {hnk}

�
, Ñk =


sign {Re {Nk}}
sign {Im {Nk}}

�
,

yielding the following real and 2-dimensional formulation of
the received signal at the FL server:

ỹkn =
p

�H̃nkx̃n + Ñk (12)

Adopting the steps taken in [15], the maximum likelihood
fusion for detection of the client symbols can be obtained as

x̂n = arg max
x02X

2Y

i=1

KY

k=1

�(
p

2�H̃nk(i)x
0
n), (13)

where H̃nk(i) represents the i-th row of H̃nk and �(·) is the
cumulative distribution function (CDF) of the zero mean and
unit-variance normal random variable.

Illustrative example: In Fig. 2, we provide the BER perfor-
mance of distributed transmission and fusion in comparison to
a point-to-point (P2P) communication while maintaining the
total transmit power identical between the two systems. As can
be seen, as the number distributed nodes increases (K), the
distributed technique significantly outperforms the P2P system
which is due to its higher diversity gain.

C. Participation control
To enforce participation control, we consider a BER thresh-

old denoted ✏th such that any cluster with BER higher than
✏th will not be triggered for the uplink communication. This
process is highlighted in Algorithm 1.



Algorithm 1: Proposed participation control algorithm
Set ✏th and collect the global CSI
for n 2 {1, ..., N} do

Find the BER via Monte-Carlo using (13)
if BER  ✏th then

↵t
n = 1

else
↵t
n = 0

end
end

III. CONVERGENCE ANALYSIS

In this section, we develop a theoretical framework to
analyze the convergence of the proposed FL network. First
clarify some definitions and make some assumption.
A. Preliminaries

1) BER effect: To facilitate the analysis, the erroneous
averaged model update due to the BER can be modeled as
an additive term to the true update and therefore (5) can be
re-written as

w̄t = w̄t�1 � ⌘

PN
n=1 ↵

t
nR
⇥
rFn

�
w̄t�1

�⇤
PN

n=1 ↵t
n

� ⌘�tG, (14)

where R[·] = Q�1{Q[·]} represents the reconstruction from
the digital data into decimal values and �tG is an equivalent
random gradient error due to the communication BER.

Lemma 1 Given a participation of ↵i, E↵i

⇥
k�tGk2

⇤
for a

bit error rate of ✏ can be found as equation (15) in the full
version of this paper [18].

2) Gradient quantization effect: Although the model quan-
tization reduces the data overhead [7], it also introduces error
affecting the FL performance. The error at the n-th local server
can be expressed for each model parameters as

e
t
nz = g

t
nz � Q

�
g
t
nz

�
8z = 1, ..., Z. (15)

Lemma 2 Under stochastic quantization, the local model
updates are unbiasedly quantized as

E
⇥
Q
�
Gt

n

�⇤
= Gt

n, (16)

where Gt
n = [gtn1, ..., g

t
nZ ]T is the matrix of gradient update

and the associated quantization error is bounded as

E
⇥
kGt

n � Q
�
Gt

n

�
k22
⇤

| {z }
Et
Q(n)



vuut
ZX

z=1

✓ 1
2 (�max � �min)

2p+q+1 � 1

◆2

. (17)

Proof : Such properties of stochastic quantization have been
extensively presented in several works such as [7] and [8].

B. Assumptions
For the computation task, we consider a general smooth

non-convex problems under the following assumptions:
Assumption 1: Each local loss function Fn(w) is lower

bounded as Fn(w) � F > �1.
Assumption 2: Each local loss function Fn(w)s are Lips-

chitz continuous with constant L, i.e., 8u and v, we have

Fn(v)  Fn(u) + (v � u)T rFn(u) + 0.5Lkv � uk22. (18)

Assumption 3: The data variance is bounded as

EkrF (u) � rFn(u)k22  D2
n 8n 2 {1, ..., N} . (19)

C. Convergence Bound
We build our convergence analysis framework around (18).

Due to stochastic quantization and participation control, we
focus on the expected values. Using (18) we can rewrite

E
⇥
F
�
w̄t
�⇤

E
⇥
F
�
w̄t�1

�⇤
+ E

h�
w̄t � w̄t�1

�T rF
�
w̄t�1

�i

+
L

2
E
⇥
kw̄t � w̄t�1k22

⇤
. (20)

Since the participation parameters create correlated random
terms, we use the total expectation to rewrite (20) as

E
⇥
F
�
w̄t
�⇤

� E
⇥
F
�
w̄t�1

�⇤


|⇤|X

i=1

⇡(↵i)

 
E↵i

h�
w̄t � w̄t�1

�T rF
�
w̄t�1

�
| ↵t = ↵i

i

+
L

2
E↵i

⇥
kw̄t � w̄t�1k22 | ↵t = ↵i

⇤
!

, (21)

where E [·] is a general expectation operator, E↵i [·] is the
expected expectation conditioned on the participation pattern
↵i and ⇡(↵i) is the probability that ↵t = ↵i where ↵i 2 ⇤
as defined in (6). Note: From this point on, we discard the
condition from conditional expectations for simplicity.

Lemma 3: An upper bound for the gradient of the system
loss function can be guaranteed if

4⌘L < 1. (22)

Proof : See Appendix A in the full version of paper [18].
Letting L = 1/8⌘ and using Lemma 3, an upper bound for

the gradient of the system loss function can be found as
⌘

4
E
⇥
krF

�
w̄t�1

�
k22
⇤

 E
⇥
F
�
w̄t�1

�⇤
� E

⇥
F
�
w̄t
�⇤

(23)

+

|⇤|X

i=1

⇡(↵i)
⌘
2

| {↵i}+ |

X

n2{ni}+

D2
n +

|⇤|X

i=1

⇡(↵i) ⌘

2| {↵i}+ |

X

n2{ni}+

e
t�1
Q (n)

+

|⇤|X

i=1

⇡(↵i) ⌘

4
E↵i

⇥
k�Gk22

⇤
+

|⇤|X

i=1

⇡(↵i) ⌘E↵i [k�Gk2] .

Averaging both sides of (23) over T time steps and letting
E
⇥
F
�
w̄T
�⇤

= F , we obtain

1

T

TX

t=1

E
⇥
krF

�
w̄t�1

�
k22
⇤

 (24)

4
�
E
⇥
F
�
w̄0
�⇤

� F
�

⌘
+

|⇤|X

i=1

⇡(↵i)

| {↵i}+ |

X

n2{ni}+

D2
n

+
TX

t=1

|⇤|X

i=1

2⇡(↵i)

T | {↵i}+ |

X

n2{ni}+

e
t�1
Q (n)

+
TX

t=1

|⇤|X

i=1

⇡(↵i)

T

�
E|↵i

⇥
k�Gk22

⇤
+ 4E|↵i

[k�Gk2]
�

(25)
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Fig. 3. The joint impact of participation threshold ✏th, channel gain mean
value � and model quantization quantization p = 1, q = 2 on the loss and
accuracy of the validation over test dataset. Furthermore, N = 5, M = 8,
and each client data size is 96 samples.
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Fig. 4. The performance comparison of the proposed FL network with
distributed quantized transmission and fusion versus the FL network based
on conventional point to point (P2P) communication. In both systems the
model quantization is used with p = 1 and q = 4, the wireless channel gain
is � = 0.2, participation threshold is ✏th = 0.35, N = 5, and M = 8.

The bound in (25) reveals how quantization error Et�1
Q (n),

data variance D2
n, and BER E"

G(t) affect the convergence of
the FL model over iterations.

IV. EXPERIMENTS & CONCLUSION

We focus on handwritten digit classification using MNIST
data-set which includes 60K training samples and 10K test
samples. We consider a simple single layer neural network
model and i.i.d local data assumption. The rest of the simula-
tion parameters are given in caption.

Figure 3 respectively illustrates the system’s training loss
and test accuracy over FL iterations under wireless channels
conditions, � = 0.2 and � = 0.5, and participation control
✏th = 0.35 and ✏th = 0.45. Furthermore, as the benchmark
scheme, we use a centralized FL with the same computation
set up, but without quantization and communication error.

The curves in Fig. 4 demonstrate the joint impact of gradient
quantization, BER, and participation control on the accuracy
and loss values of the FL network. As can be seen, improv-
ing the quantization resolution and reliability translate into
better performance. Furthermore, the curves illustrate that the
proposed distributed quantized transmission can achieve the
performance of the point to point transmission although power
consumption is divided among the distributed nodes, avoiding
a significant energy consumption demand on a single device.
Particularly, the transmit power for the P2P communication
is K time bigger than the transmit power of each distributed
node in our proposed model.

V. CONCLUSION

In this paper we proposed a novel FL network based on
distributed quantized transmission and studied the convergence

of the system under the joint consideration of BER, model
quantization, and participation control. We showed that our
proposed model can provide the performance of a conventional
FL networks with P2P communication, while the energy
consumption is divided across the distributed nodes which
make our proposed model especially useful for energy-limited
applications such as satellite communication networks.
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